Chapitre:

TAUX D'EVOLUTION

1ère STG

I. <u>Variation absolue</u>; taux d'évolution:

Exemple : Au mois de novembre dans un magasin, une paire de chaussure coûtait 50€. Au mois de décembre après évolution son prix était de 56€. Quelle est la variation absolue du prix ? Quel est (en %) le taux d'évolution (ou évolution relative) du prix ?

L'évolution absolue est de : 56€-50€=6€.

Le taux d'évolution t (ou évolution relative) est de : $t = \frac{56 - 50}{50} = \frac{6}{50} = 0,12 = \frac{12}{100} = 12\%$.

Le prix à augmenté de 12%; son taux d'augmentation est de 12%.

On considère deux réels strictement positifs y_1 et y_2 .

- On appelle le nombre $y_1 y_2$ la **variation absolue** de y_1 à y_2 .
- On appelle $t = \frac{y_2 y_1}{y_1}$, le taux d'évolution (ou variation relative) de y_1 à y_2 .

Valeur finale – Valeur initiale Valeur initiale

II. Coefficient multiplicateur :

Exemple: Au mois de novembre dans un magasin, une paire de chaussure coûtait 50€. Au mois de décembre après évolution son prix était de 56€. Par quelcoefficient multiplicateur a été multiplié son prix?

Question : 50 € × ? = 56 € ; ? : coefficient multiplicateur.

Le coefficient multiplicateur est égal à : $\frac{56}{50} = 1,12$.

On remarque que $1,12=1+0,12=1+\frac{12}{100}=1+t$

Le prix a donc été multiplié par \times (1+t)

On considère deux réels strictement positifs y₁ et y₂.

• Si t est le taux d'évolution de y_1 à y_2 , alors $y_2 = (1 + t) y_1$.

$$y_1$$
 $\times (1+t)$ y_2

• Le nombre (1 + t) est appelé **coefficient multiplicateur** de y_1 à y_2 .

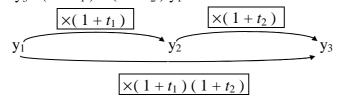
- Si le coefficient multiplicateur est supérieur à 1 cela correspond à une augmentation.
- Si le coefficient multiplicateur est inférieur à 1 cela correspond à une diminution.

ichard.math.free.fi

III. Evolution successives ; évolution réciproque :

1. Evolutions successives :

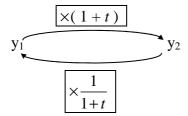
Exemple : Dans un magasin, un article coûtait 25€ le 15 janvier. Son prix augmente de 10% le 16 janvier, puis encore de 20% le 30 janvier. Quel est son nouveau prix le 31 janvier ? Quel est le coefficient multiplicateur associé à ses deux évolutions successives ?


Prix le 17 janvier : 25€×
$$\left(1 + \frac{10}{100}\right)$$
 = 25€× 1,10= 27,54

Prix le 31 janvier : 27,5€×
$$\left(1 + \frac{20}{100}\right)$$
 = 27,5€× 1,20= 33⁴

Calcul en une seule étape: 25€×
$$\left(1+\frac{10}{100}\right)$$
× $\left(1+\frac{20}{100}\right)$ = 25€× 1,10× 1,20± 334

On considère trois réels strictement positifs y₁, y₂ et y₃.


• Soit t_1 est le taux d'évolution de y_1 à y_2 : $y_2 = (1 + t_1) y_1$; soit t_2 est le taux d'évolution de y_2 à y_3 : $y_3 = (1 + t_2) y_2$; en conclusion : $y_3 = (1 + t_1) \times (1 + t_2) y_1$.

2. Evolution réciproque :

On considère deux réels strictement positifs y₁ et y₂.

• Si t est le taux d'évolution de y_1 à y_2 , alors $y_2 = (1 + t) y_1$. Le **taux d'évolution réciproque t** a pour coefficient multiplicateur l'inverse du coefficient multiplicateur : $1+t' = \frac{1}{1+t}$

On en déduit le taux d'évolution réciproque, de y_2 à y_2 : $t' = \frac{1}{1+t} - 1$