Fiche 1 : Fonctions : Calculatrice Casio Graph 35+ (ou graph 25+

Exercice 1 : On souhaite avoir la représentation graphique de la fonction $f(x) = x^2 - 2x - 4$ sur l'intervalle [-2;4] puis un tableau de valeurs avec un pas de 0,5.

Le mode Graph

Entrer dans le menu

→ Valider avec EXE

2

O

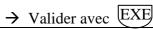
Entrer l'expression de la fonction

Graph Func : Y= $Y1=X^2-2X-4$ Y3: Y4: Y5: Y6:

SEL | DEL | TYPE | COLR | GMEM | DRAW

Dans le menu Graph func : Y= Entrer sur la ligne Y1: $Y1 = X^2 - 2X - 4$

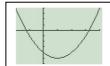
→ Valider avec (EXE)


Fenêtre de visualisation

View Window Xmin : -2 max:4 scale: 1 Ymin:-6 max:4 scale: 1 INIT TRIG STD STO RCL Aller dans le menu View Window: (SHIFT)+ (F3) On définit la fenêtre de visualisation.

Entrer les valeurs suivantes :

 $X_{MIN} = -2$; $X_{MAX} = 4$; $Y_{MIN} = -6$ $Y_{MAX} = 4$


Les échelles (scale) de graduation des axes seront égale à 1. Touche(-)

Afficher la courbe

Pour afficher la courbe, dans le menu Graph, taper sur DRAW (F6)

6

Le mode Table

Entrer dans le menu

→ Valider avec EXE

Début, fin et pas de tableau de valeurs

Table Range

Start: -2

End:4 Pitch: 0.5

Aller dans le menu RANG: (F5) On définit les paramètres du tableau. Start: -2; End: 4; Pitch: 0.5

Pour afficher le tableau, dans le menu Table, taper sur TABL (F6)

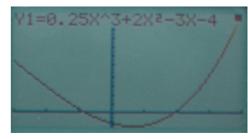
Χ	Y1
-2	4
-1.5	1.25
-1	-1
-0.5	-2 75

Faire défiler les valeurs avec les touches « REPLAY »

- <u>Autres exercices</u> : Représentation graphique d'une fonction (avec valeurs de la fenêtre de visualisation données)
- a) Soit la fonction $f(x) = -0.5x^2 + 2x + 2$ définie sur \mathbb{R} . Visualiser la courbe représentative C_f de la fonction f sur votre calculatrice (fenêtre de visualisation : $X_{MIN} = -4$; $X_{MAX} = 7$; $Y_{MIN} = -6$; $Y_{MAX} = 5$.
- b) Soit la fonction $f(x) = x^2$ définie sur \mathbb{R} . Visualiser la courbe représentative C_f de la fonction f sur votre calculatrice (fenêtre de visualisation : $X_{MIN} = -3$; $X_{MAX} = 3$; $Y_{MIN} = -1$; $Y_{MAX} = 10$.)
- c) Soit la fonction $f(x) = \frac{1}{x}$ définie sur \mathbb{R}^{*} . Visualiser la courbe représentative C_f de la fonction f sur votre calculatrice (fenêtre de
- visualisation : $X_{MIN} = -4$; $X_{MAX} = 4$; $Y_{MIN} = -4$; $Y_{MAX} = 4$.)
- d) Soit la fonction f(x) = 2x + 3 définie sur \mathbb{R} . Visualiser la courbe représentative C_f de la fonction f sur votre calculatrice. (fenêtre de visualisation : $X_{MIN} = -4$; $X_{MAX} = 4$; $Y_{MIN} = -10$; $Y_{MAX} = 10$.) .

Exercice 2 : Tableau de valeurs et recherche de la fenêtre de visualisation.

On souhaite avoir un tableau de valeurs de la fonction $f(x) = 0,25x^3 + 2x^2 - 3x - 4$ et sa représentation graphique sur l'intervalle [-3;4].

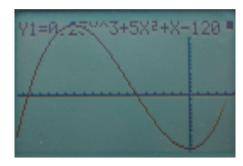

1. Donner le tableau de valeurs sur l'intervalle [-3;4] en choisissant un pas (pitch) égal à 0,5.

	X_{MIN}							X_{MAX}
	1							
X	-3							4
f(x)	16,25							

2. Dans le tableau noter les valeurs minimales et maximales de f(x); elles correspondront respectivement au valeurs Y_{MIN} et Y_{MAX} de la fenêtre de visualisation. (X_{MIN} et X_{MAX} étant données par les bornes de l'intervalle [-3;4]). $Y_{MIN} = \dots$; $Y_{MAX} = \dots$.

Maintenant que vous avez définies les valeurs X_{MIN} , X_{MAX} , Y_{MIN} et

Maintenant que vous avez définies les valeurs X_{MIN} , X_{MAX} , Y_{MIN} et Y_{MAX} , **visualiser** alors la courbe représentative C_f de la fonction f sur votre calculatrice.


Exercice 3: Recherche de la fenêtre de visualisation : X_{MIN} , X_{MAX} , Y_{MIN} et Y_{MAX}

On souhaite avoir la représentation graphique sur [-19,5 ;5] de la fonction $f(x) = 0.25x^3 + 5x^2 + x - 120$

1. Déterminer X_{MIN} , X_{MAX} , Y_{MIN} et Y_{MAX} en utilisant un tableau de valeurs (mode TABLE) puis **visualiser** votre courbe.

$$X_{MIN} = \dots \qquad ; \, X_{MAX} = \dots \dots$$

$$Y_{MIN} = \dots$$
; $Y_{MAX} = \dots$

Exercice 4 : Recherche d'une solution approchée à l'aide d'un tableau de valeurs.

Soit f la fonction définie sur [-3, 5] par : $f(x) = \frac{1}{3}x^3 + x^2 - 3x - 10$. En utilisant votre calculatrice :

- **1.** Dresser le tableau de valeurs de f(x) pour x allant de -3 à 5 avec un pas de 0,5.
- **2.** Dresser le tableau de variation de f pour x appartenant à [-3, 5].
- **3.** A l'aide du tableau de votre calculatrice donnez un encadrement d'amplitude 10^{-3} de la valeur de x pour laquelle f(x) = 0. (<u>Info</u>: le « pitch » doit donc être égal à 10^{-3} c'est-à-dire égal à 0,001).

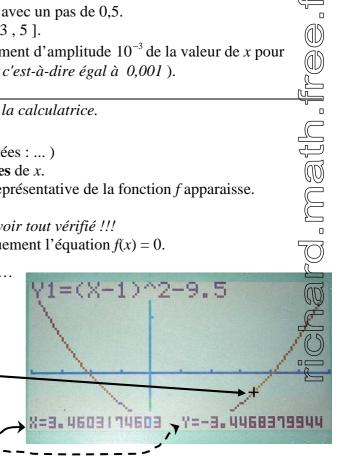
Exercice 5 : Exemple de « mini-contrôle » sur l'utilisation de la calculatrice.

Soit la fonction f définie sur [-4;6] par $f(x) = (x-1)^2 - 9.5$

- 1. Saisir cette fonction. (Donner la séquence de touches appuyées : ...)
- 2. Recopier le tableau des valeurs de f pour des valeurs entières de x.
- ${f 3.}$ Régler la fenêtre de façon à ce que la totalité de la courbe représentative de la fonction f apparaisse.

(Paramètres de la fenêtre choisie : X_{MIN} , ...)

- **4.** Afficher la courbe à l'écran. Appeler le professeur, après avoir tout vérifié!!!
- **5.** En mode « trace : touches SHIFT + F1 », résoudre graphiquement l'équation f(x) = 0.


Solution(s) obtenue(s):

<u>Information mode trace</u>:

Faire défiler « la croix » __ sur la courbe avec les touches « REPLAY »

